Очистка органических растворителей
ВВЕДЕНИЕ
ЧИСТОТА РАСТВОРИТЕЛЕЙ
Требования, предъявляемые к степени чистоты растворителя, несомненно, зависят от того, как этот растворитель затем будет использоваться. Поэтому не существует адекватных экспериментальных критериев для идеальной чистоты растворителей; с применением обычных методов очистки можно получить растворитель лишь приблизительно 100%-ной чистоты. С практической точки зрения чистота определяется следующим образом: «Материал считается достаточно чистым, если он не содержит примесей такой природы и в таких количествах, которые могли бы препятствовать его использованию в целях, для которых он предназначен»
ОСНОВНЫЕ МЕРЫ ПРЕДОСТОРОЖНОСТИ
Очистка растворителей и работа с ними включает некоторые правила, которые следует соблюдать:
- Ни при каких обстоятельствах не следует использовать натрий и другие активные металлы или гидриды металлов для высушивания жидкостей или соединений кислотного характера (или галогенсодержащих соединений), которые могут действовать как окислители.
- Не следует применять энергичные высушивающие агенты (такие, как Na, СаН2, LiAlH4 и H2SO4, P2O5) до тех пор, пока не проведена предварительная грубая сушка с помощью обычных агентов (Na2SО4 и др.) или в веществе не гарантировано низкое содержание воды.
- Перед перегонкой и высушиванием простых эфиров и других растворителей обязательно следует проверять наличие в них перекисей и удалять их. Во избежание образования перекисей большинство простых эфиров не следует хранить на свету и на воздухе в течение длительного времени.
- Следует помнить, что многие растворители (например, бензол и др.) токсичны и обладают способностью накапливаться в организме; поэтому необходимо избегать вдыхания паров этих растворителей. Следует помнить также, что многие растворители, за исключением, например, ССl4 и СНСl3, легко воспламеняются; особенно опасны в этом отношении диэтиловый эфир и CS2.
- Тщательно очищенные растворители рекомендуется хранить в герметичной стеклянной посуде в инертной атмосфере (обычно N2, свободный от О2). Если герметичность обеспечить невозможно, следует создать избыточное давление инертного газа над поверхностью жидкости. Длительное хранение некоторых растворителей обеспечивается герметизацией закрытой емкости парафином.
МЕТОДЫ БЫСТРОГО ОПРЕДЕЛЕНИЯ ПЕРЕКИСЕЙ В ЖИДКОСТЯХ
1. Наиболее чувствительный метод (позволяет определить до 0,001 % перекиси); под действием капли жидкости, содержащей перекись, бесцветный ферротиоцианат превращается в красный ферритиоциапат. Реагент готовят следующим образом: 9 г FeSO4•7H2О растворяют в 50 мл 18%-ной НСl. Добавляют немного гранулированного Zn и 5 г тиоциапата натрия; после исчезновения красного окрашивания добавляют еще 12 г тиоцианата натрия и раствор декантируют с непрореагировавшего Zn в чистую склянку.
2. Несколько миллилитров жидкости помещают в колбу со стеклянной пробкой. Добавляют 1 мл свежеприготовленного 10 %-ного водного раствора KI, встряхивают и оставляют стоять в течение 1 мин. Появление желтой окраски указывает на наличие перекиси. Более быстрый метод заключается в
следующем: около 1 мл жидкости добавляют к равному объему ледяной уксусной кислоты, содержащей около 100 мг NaI или KI. Желтая окраска раствора указывает па наличие низкой концентрации, коричневая — высокой концентрации перекиси.
3. Метод определения перекисей в жидкостях, нерастворимых в воде, состоит в cледующем: несколько миллилитров жидкости добавляют к раствору, содержащему около 1 мг бихромата натрия, 1 мл воды и 1 каплю разбавленной H2SО4. Голубая окраска органического слоя (ион перхромата) указывает на наличие перекиси.
4. Некоторое количество жидкости стряхивают с каплей чистой ртути; в присутствии перекиси образуется черная пленка окиси ртути.
УДАЛЕНИЕ ПЕРЕКИСИ (В ЧАСТНОСТИ, ИЗ ПРОСТЫХ ЭФИРОВ)
1. Большие количества перекисей удаляют, выдерживая жидкости над окисью алюминия или пропуская их через короткие колонки, заполненные окисью алюминия. Применение активированной окиси алюминия позволяет одновременно высушивать растворитель. Меры предосторожности: при
пропускании растворителей через колонку необходимо следить, чтобы окись алюминия была полностью смочена растворителем; адсорбированные перекиси следует элюировать или вымывать, например, 5%-ным водным раствором сульфата железа FeSО4.
2. Из жидкостей, нерастворимых в воде, перекиси удаляют встряхиванием с концентрированным раствором соли двухвалентного железа (100 г сульфата железа (II), 42 мл концентрированной НCl, 85 мл воды). При такой обработке в некоторых простых эфирах могут образовываться небольшие количества альдегидов, которые удаляют промыванием 1%-ным раствором перманганата калия КМnO4, затем 5%-ным водным раствором NaOH и водой.
3. Одним из наиболее эффективных реагентов для удаления перекисей является водный раствор пиросульфита натрия (называемого также мета бисульфитом Na2S2O5), который быстро реагирует с перекисями в стехиометрических соотношениях.
4. Перекиси в больших концентрациях полностью удаляют из эфиров промыванием на холоду триэтилентетрамином (25% веса эфира).
5. Хлорид олова SnCl2 ‒ единственный неорганический реагент, который эффективен в твердом состоянии.
6. Из эфиров, растворимых в воде, перекиси обычно удаляют кипячением эфира с обратным холодильником в присутствии 0,5 вес. % Сu2Cl2 и последующей перегонкой.
МЕТОДЫ ОЧИСТКИ
Использование приведенных ниже методов очистки дает возможность получать растворители со степенью чистоты, удовлетворяющей в большинстве случаев требованиям химического и физического эксперимента (синтез, кинетические исследования, спектроскопия, определение дипольных моментов и т.д.). При этом предполагается, что экспериментатор использует для очистки выпускаемые промышленностью растворители с определенной стандартной степенью чистоты, а не технические растворители, содержащие большое количество примесей. Если не сделано специальных оговорок, перегонка растворителя осуществляется при атмосферном давлении. Если не указан метод кристаллизации растворителя из другой жидкости, под кристаллизацией подразумевается вымораживание очищаемого растворителя; при этом с кристаллической массы сливают до 20% жидкости. В дополнение к изложенным здесь методам во многих случаях для очистки растворителей можно рекомендовать так называемое «адсорбционное фильтрование» с использованием активированной окиси алюминия.
Ароматические углеводороды
Бензол очень высокой чистоты (т. кип. 80,1 °С; т. пл. 5,53 °С) получают дробной кристаллизацией из этанола или метанола с последующей перегонкой. При использовании традиционного метода очистки бензол встряхивают или перемешивают с концентрированной серной кислотой (100 мл на 1 л бензола) и затем удаляют слой кислоты; операцию повторяют до тех пор, пока слой кислоты не будет иметь очень слабую окраску. Бензол декантируют и перегоняют. Очистка с использованием серной кислоты позволяет удалить из бензола примеси тиофена, олефинов и воду.
Толуол (т. кип. 110,6 °С) и ксилолы очищают аналогичным образом; следует помнить, однако, что эти углеводороды обладают более высокой, чем бензол, способностью сульфироваться, поэтому при обработке их серной кислотой необходимо охлаждать смесь, поддерживая температуру ниже 30 °С. Кроме серной кислоты, рекомендуется также применять для высушивания СаСl2, хотя, вообще говоря, может оказаться достаточно и простой перегонки, так как указанные углеводороды образуют азеотропные смеси с водой или имеют значительно более высокую температуру кипения, чем вода.
Ацетон (т. кип. 56,2 °С)
Ацетон очень трудно высушить; применение многих из обычно используемых иссушающих агентов (даже МgSO4) приводит к конденсации ацетона. Для высушивания удобно использовать молекулярное сито 4А и К2СО3. Перегонка над небольшим количеством КМnО4 позволяет разрушить примеси, содержащиеся в ацетоне, например альдегиды. Очень чистый ацетон получают следующим образом: насыщают сухим NaІ при 25‒30 °С, раствор декантируют и охлаждают до 10 °С; кристаллы NaІ образуют с ацетоном комплекс, который отфильтровывают и нагревают до 30 °С; образующуюся жидкость перегоняют.
Ацетонитрил (т. кип. 81,6 °С)
Ацетонитрил, содержащий воду, предварительно высушивают, затем перемешивают с СаН2 до прекращения выделения газа и перегоняют над Р2О5 (≤5 г/л) в стеклянной аппаратуре с дефлегматором с высоким флегмовым числом. Дистиллят кипятят с обратным холодильником над СаН2 (5 г/л) не менее 1 ч, затем медленно перегоняют, отбрасывая первые 5 % и последние 10 % дистиллята, для того чтобы уменьшить содержание акрилонитрила. Если ацетонитрил содержит в качестве примеси бензол (полоса поглощения в УФ-спектре при 260 нм, интенсивный «хвост» при 220 нм), последний удаляют азеотропной перегонкой с водой перед обработкой Р2О5.
трет-Бутиловый спирт (т. кип. 82 °С)
Для получения спирта очень высокой чистоты (т. пл. 25,4 °С) его перегоняют над СаО с последующей многократной кристаллизацией.
Диметилсульфоксид [т. кип. 189 °С (разл.)]
Диметилсульфоксид может содержать, помимо воды, примеси ди-метилсульфида и сульфона. Для очистки его держат в течение 12 и более часов над свежей активированной окисью алюминия, дриеритом, ВаО или NaOH. Затем перегоняют под уменьшенным давлением (~2—3 мм рт. ст., т. кип. 50 °С) над гранулами NaOH или ВаО и хранят над молекулярным ситом 4А.
Диметилформамид (т. кип. 152 °С)
N, N-диметилформамид может содержать примеси воды и муравьиной кислоты. Растворитель перемешивают или встряхивают с КОН и перегоняют над СаО или ВаО.
1,4-Диоксан (т. кип. 102 °С)
Диоксан может содержать большое количество примесей, поэтому его трудно очистить. Известно, что многие из описанных методов неэффективны при очистке этого растворителя, так как приводят к разложению жидкости. Традиционный метод очистки состоит в следующем. Смесь 300 мл воды, 40 мл концентрированной НCI и 3 л диоксана кипятят с обратным холодильником в течение 2 ч в медленном токе азота (для удаления ацетальдегида, который образуется при гидролизе примеси ацеталя гликоля). Раствор охлаждают и добавляют гранулы КОН до тех пор, пока они не перестанут растворяться и не произойдет разделение слоев. Слой диоксана (верхний слой) декантируют и сушат над свежей гидроокисью калия. Высушенный диоксан кипятят над Na в течение 12 ч или до тех пор, пока Na не будет сохранять блестящую поверхность. Затея растворитель перегоняют над Na и хранят в темноте в атмосфере N2.
Для высушивания диоксана не следует использовать LiAlH4, так как он может разлагаться при температуре кипения растворителя. Для того чтобы обеспечить отсутствие кислорода и перекисей в очищенном диоксане, рекомендуется использовать бензофенонкетил.
Диэтиловый эфир (т. кип. 34,5 °С)
Во всех случаях, за исключением тех, когда используют готовый «абсолютный» эфир, растворитель следует проверять на присутствие перекисей и соответствующим образом обрабатывать. При работе с эфиром необходимо соблюдать дополнительные меры предосторожности, связанные с легкой воспламеняемостью растворителя. Достаточно сухой эфир можно получить высушиванием и перегонкой над натриевой проволокой, однако наиболее эффективным методом является перегонка над LiAlH4 (или СаН2).
Метанол (т. кип. 64,5 °С)
В метаноле, помимо воды, обнаруживаются примеси карбонильных и гидроксилсодержащих соединений с числом атомов С от 1 до 4, однако растворитель со степенью чистоты «reagent grade» обычно содержит лишь следы таких примесей. Ацетон удаляют из метанола в виде йодоформа после
обработки NaOI. Большую часть воды можно удалить перегонкой, так как метанол не образует азеотропных смесей с водой. Очень сухой метанол получают, выдерживая растворитель над молекулярными ситами ЗА или 4А или пропуская через колонку, заполненную этими молекулярными ситами;
затем растворитель сушат над гидридом кальция. В качестве высушивающего агента для метанола не рекомендуется использовать дриерит! Остатки воды можно также удалить с помощью метилата магния следующим образом: смесь 50 мл метанола, 5 г Mg в виде стружки и 0,5 г сублимированного иода кипятят с обратным холодильником до обесцвечивания раствора и прекращения выделения водорода. Затем добавляют 1 л метанола, кипятят с обратным холодильником около 30 мин и осторожно перегоняют.
Нитроалканы
Поступающие в продажу соединения с числом атомов углерода от 1 до 3 можно достаточно хорошо очистить высушиванием над хлористым кальцием или P2O5 с последующей осторожной перегонкой. Нитрометан высокой чистоты также получают дробной кристаллизацией (т. пл. ‒ 28,6 °С).
Нитробензол (т. кип. 211 °С)
Нитробензол, очищенный дробной кристаллизацией (т. пл. 5,76 °С) и перегонкой над Р2О5, бесцветен. Растворитель, содержащий примеси, быстро окрашивается над P2О5; чистый растворитель остается бесцветным даже после продолжительного контакта с Р2О5.
Пиридин (т. кип. 115,3 °С)
Пиридин высушивают в течение длительного времени над гранулами КОН, затем перегоняют над ВаО. Следует иметь в виду, что пиридин очень гигроскопичен (образует гидрат, т. кип. 94,5 °С), поэтому необходимо следить, чтобы в очищенный растворитель не попадала влага.
2-Пропанол [изо-пропанол] (т. кип. 82,4 °С)
2-Пропанол образует азеотропную смесь с водой (9 % воды, т. кип. 80,3 °С); воду можно удалить кипячением с обратным холодильником или перегонкой над известью. Растворитель склонен к образованию перекисей, которые обычно разрушают кипячением с обратным холодильником над SnСl2. Достаточно сухой и чистый растворитель получают перегонкой над безводным сульфатом кальция; очень сухой спирт получают с использованием Мg по методике, описанной для метанола.
Серная кислота (т. кип. около 305 °С)
По Джолли, 100%-ную кислоту обычно получают добавлением дымящей серной кислоты к стандартной 96 %-ной кислоте до тех пор, пока содержащаяся в ней вода не превратится в серную кислоту. Время окончания этой процедуры определяют следующим образом: через кислоту с помощью
небольшого каучукового шприца продувают влажный воздух; образование тумана свидетельствует об избытке SОз; если кислота еще не 100%-ная, туман не образуется. Этот метод позволяет регулировать состав кислоты с точностью до 0,02 % (!). Серная кислота очень гигроскопична, поэтому необходимо следить, чтобы в нее не попадала влага.
Сероуглерод (т. кип. 46,2°).
Сероуглерод представляет собой легко воспламеняющуюся и токсичную жидкость, поэтому при работе с ним необходимо соблюдать особые меры предосторожности. Перегонять растворитель следует очень осторожно, используя водяную баню, которую рекомендуется нагревать до температуры, ненамного превышающей температуру кипения СS2. Примеси серы из сероуглерода удаляют, встряхивая растворитель сначала с Нg, затем с холодным насыщенным раствором НgСl2 и далее с холодным насыщенным раствором КМnO4, после чего сушат над Р2О5 и перегоняют.
Тетрагидрофуран (т. кип. 66 °С)
Растворитель обязательно следует проверять на наличие перекисей и соответствующим образом обрабатывать; следы перекисей удаляют кипячением 0,5 %-ной суспензии Cu2Cl2 в тетрагидрофуране в течение 30 мин, после чего растворитель перегоняют. Затем тетрагидрофуран сушат над гранулами КОН, кипятят с обратным холодильником и перегоняют над литийалюминийгидридом или гидридом кальция. Такой метод позволяет получить очень сухой растворитель.
Уксусная кислота (т. кип. 118 °С)
Поступающая в продажу ледяная уксусная кислота (~99,5 %) содержит примеси карбонильных соединений, которые удаляют кипячением с обратным холодильником в присутствии от 2 до 5 вес. % КМnO4 или избытка Сr2Оз, после чего кислоту перегоняют. Следы воды удаляют при нагревании обработкой двойным или тройным избытком триацетилбората, который готовят нагреванием при 60 °С смеси борной кислоты и уксусного ангидрида (в соотношении 1:5 по весу); смесь уксусной кислоты с триацетилборатом охлаждают и образовавшиеся кристаллы отфильтровывают. После перегонки получают безводную кислоту. Уксусную кислоту обезвоживают также перегонкой над Р2О5.
Четыреххлористый углерод (т. кип. 76,5 °С)
Примеси CS2 из ССl4 удаляют перемешиванием горячего растворителя с 10 об. % концентрированного спиртового раствора КОН. Эту процедуру повторяют несколько раз, после чего растворитель промывают водой, высушивают над СаСl2 и перегоняют над P2О5.
Хлороформ (т. кип. 61,2 °С)
Поступающий в продажу хлороформ чаще всего содержит около 1 % этанола в качестве стабилизатора, предохраняющего хлороформ от окисления кислородом воздуха в фосген. Для очистки растворителя рекомендуется один из следующих методов:
а) Хлороформ встряхивают с концентрированной H2SO4, промывают водой, сушат над СаСl2 или К2СO3 и перегоняют.
б) Хлороформ пропускают через колонку, заполненную активированной окисью алюминия (степень активности 1) (около 25 г на 500 мл CHCl3).
в) Хлороформ несколько раз встряхивают с водой (около половины объема растворителя), сушат над СаСl2 и перегоняют над Р2О5.
Растворитель, очищенный по любому из этих методов, хранят в темноте в атмосфере N2.
Этанол (т. кип. 78,3 °C)
Поступающий в продажу «абсолютный» этанол содержит около 0,1—0,5% воды и, как правило, 0,5—10% денатурирующего агента (ацетона, бензола, диэтилового эфира или метанола и т. д.). Более доступный и менее дорогой растворитель обычно представляет собой азеотропную смесь с водой (4,5 %) (95 %-ный этанол или cпирт-ректификат) (т. кип. 78,2 °С). Именно этот растворитель чаще всего используется в УФ-спектрофотометрии (этанол со степенью чистоты «reagent grade» или USP не содержит примесей бензола и других денатурирующих агентов). Чистый этанол весьма гигроскопичен и
легко поглощает влагу; это обстоятельство следует считывать при получении сухого растворителя.
Для удаления следов воды из абсолютного этанола рекомендуется следующий метод. Смесь 60 мл абсолютного этанола, 5 г Mg (стружка) и нескольких крапель CCl4 или СНСl3 (катализатор) кипятят с обратным холодильником до тех пор, пока весь Mg не превратится в этилат. Добавляют еще 900 мл абсолютного этанола, кипятят с обратным холодильником в течение 1 ч. Если необходимо обеспечить отсутствие в абсолютируемом растворителе соединений галогенов, вместо CCl4 или СНСl3 в качестве катализатора можно использовать легколетучий этилбромид. Образование объемного осадка при добавлении в этанол бензольного раствора этилата алюминия позволяет обнаружить присутствие в растворителе до 0,05 % воды. Хранение абсолютированного этанола над молекулярным ситом 3А позволяет сохранять растворитель с содержанием воды не более 0,005 %. Большую часть воды из 95 %-ного спирта удаляют кипячением с обратным холодильником над свежей известью (СаО) и последующей перегонкой. В качестве другого метода рекомендуется азеотропная перегонка: воду отгоняют из тройной азеотропной смеси, например бензол-этанол-вода (т. кип. 64,48 °С); затем ОТГОНЯЮТ бензол из двойной азеотропной смеси бензол—этанол (т. кип. 68,24 °С).
Этилацетат (т. кип. 77,1 °С)
Поступающий в продажу этилацетат чаще всего содержит а качестве примесей воду, этанол и кислоты; их удаляют промывая растворитель 5 %-ным водным раствором карбоната натрия, затем насыщенным раствором хлористого кальция, после чего высушивают над безводным карбонатом калия и перегоняют над Р2О5.
Ваш отзыв
Вы должны войти, чтобы оставлять комментарии.