Производство серной кислоты контактным способом
Производство серной кислоты контактным способом
Наряду с английской «камерной» кислотой существовала также более концентрированная «саксонская» кислота, или олеум (дымящая концентрированная серная кислота). В начале XIX в. в сернокислотном производстве самой крупной была фирма Иоганна Давида Штарка из Богемии, которая располагала обширными и географически выгодно расположенными месторождениями купороса и до конца XIX в. была в состоянии полностью удовлетворять потребности промышленности в концентрированной серной кислоте.
Тем не менее, уже в течение десятков лет в XIX в. химики искали новые способы получения дымящей серной кислоты. Так, в 1831 г. Перегрин Филипс наблюдал, что диоксид серы мгновенно реагирует с кислородом воздуха, если оба эти газа в соответствующих соотношениях пропускать с помощью воздухонагнетателя через раскаленную трубку из платины, фарфора или другого материала, устойчивого к действию горячего серного ангидрида. Необходимо было только, чтобы в трубке находилась платиновая проволока или маленькие кусочки платины. Образующийся при этом триоксид серы поглощался затем в обшитой свинцом и наполненной шамотом башне, в которой сверху вниз стекала вода.
В лабораторных условиях этот синтез хорошо осуществлялся. Однако попытки провести его в большем масштабе оканчивались неудачей. Кроме того, метод был сложен и дорог и поэтому казался не пригодным для промышленного производства. Несмотря на это, постоянно проводились все новые и новые работы по его совершенствованию. В качестве катализаторов химики испытывали разнообразные контактные массы из платинированного асбеста и пемзы, раскаленные фарфоровые трубки, кремневую кислоту, оксиды меди, железа и другие вещества. Но все было напрасно. Правда, таким образом, накапливались данные о природе катализаторов и их свойствах. Было замечено, что некоторые вещества заметно ускоряют взаимодействие диоксида серы с кислородом, однако этот процесс очень быстро останавливался, так что большие технические сооружения могли оказаться нерентабельными.
Во второй половине XIX в. потребность в дымящей серной кислоте резко возросла. В 1868 г. Карл Гребе и Карл Либерман открыли синтетический метод получения ализарина из ант-рахинон-2-сульфоновой кислоты; тремя годами позднее Генрих Каро синтезировал красные азокрасители. В это же время стало развиваться производство синтетических красителей, а для проектируемых в большом количестве фабрик понадобилось очень много серного ангидрида. Можно было предвидеть, что если эта потребность в олеуме не сможет быть удовлетворена, то по сравнению с традиционными природными красителями синтетические красители не будут иметь никаких преимуществ.
В 1875 г. К. Винклер, применивв качестве катализатора платину, обнаружил, что действие катализатора зависит от степени разбавления газов. Так, из смеси чистого диоксида серы с кислородом он сумел перевести в триоксид серы 73,3 % диоксида серы, из смеси чистого диоксида серы с воздухом — только 47,4% , а из смеси неочищенного диоксида серы с воздухом — всего 11,5 % диоксида серы. Отсюда он сделал вывод, что действие платинированного асбеста и других катализаторов ослабляется при разбавлении диоксида серы другими индифферентными газами. Такое разбавление возникает также в случае, если диоксид серы и кислород взяты не в стехиометрических количествах. Поэтому для получения хороших выходов продукта необходимо вводить в реакции стехиометрические количества исходных веществ.
Этот вывод на первый взгляд противоречил закону действия масс, который был сформулирован Като Максимилианом Гульдбергом и Петером Вааге в 1867 г., т.е. еще до открытия Винклера. Тем не менее, данные Винклера легли в основу технологических испытаний: 60 % -ную «камерную» кислоту разлагали термическим способом на диоксид серы, кислород и водяной пар и осушенную газовую смесь пропускали над нагретым платинированным асбестом. Выходы серной кислоты, получаемые на заводе, с 1877 г. применявшего метод Винклера, были невелики, и лишь высокие цены на концентрированную серную кислоту оправдывали существование этого завода.
В 90-е годы Рудольф Книч под руководством Генриха фон Брунка, директора фирмы БАСФ («Баденские анилиновые и содовые фабрики»), разработал рентабельный метод получения серной кислоты.
Рудольф Книч родился в 1854 г. в Оппельне, умер в 1906 г. в Людвигсхафене. Учился он в Шлоссерберуфе и сумел выработать в себе упорство и терпение — самые характерные черты его личности. Позднее Книч учился в ремесленной школе в Гливице, а с 1876 г. изучал химию в Берлине. В течение двух лет (1880−1882 гг.) Книч работал химиком на заводе в Гёрлице, а затем два года — на химическом заводе в Базеле. Книч был трудным в общении человеком, и поэтому базельский фабрикант был рад, когда в 1884 г. он перешел на службу в БАСФ. В то время директором БАСФ был Г. фон Брунк, обладавший широким химическим кругозором и хорошо разбиравшийся в людях. Он увидел в Книче человека, способного к кропотливому труду, талантливого и неутомимого исследователя.
Первой решенной Кничем проблемой было получение жидкого хлора. Затем Брунк поручил ему разработку рентабельного способа получения концентрированной серной кислоты и всячески помогал ему в этом. Упорный и настойчивый труд в течение 14 лет привел к результату, который превзошел все ожидания.
Книч провел большую работу по определению оптимальных условий процесса получения серной кислоты контактным способом. Он обнаружил, что при стехиометрических соотношениях диоксида серы и кислорода выходы продукта не соответствуют выводам, сделанным Винклером. Совсем, напротив, эти выходы заметно увеличивались при повышении в смеси содержания кислорода (или воздуха).
Серный ангидрид Книч получал из газов обжига, содержащих диоксид серы, сильно загрязненный различными примесями. Книч пропускал газы обжига через длинные свинцовые трубы, чтобы пыль и зола оседали в них и не отравляли используемый платиновый катализатор. Несколько дней аппараты работали хорошо, выходы составляли около 75 % , но затем образование серного ангидрида (триоксида серы) неожиданно прекращалось из-за загрязнения платинового катализатора. Поэтому Книч стал проводить еще более тщательную очистку газов обжига, пропуская их через угольные и асбестовые фильтры, однако и это не предотвращало загрязнения катализатора. Незначительные количества каких-то веществ отравляли катализатор. Книч с сотрудниками обнаружили, что это были следы мышьяка. Мельчайшие количества мышьяка попадали на катализатор из газов обжига, так что нужно было последние еще тщательнее очищать. С «обезвреженными» газами обжига реакция протекала лучше. Однако через несколько дней платиновые катализаторы вновь оказывались отравленными мышьяком. В поисках источника мышьяковистых загрязнений по железным отводным трубам отбирали небольшие количества серной кислоты. Вначале в этих пробах находили следы мышьяковистого водорода, но после того, как удалось полностью избавиться и от этих количеств мышьяка, катализатор больше не отравлялся.
Тем не менее, выходы триоксида серы были мало удовлетворительными. Было высказано предположение, что взаимодействие диоксида серы с кислородом происходит тем полнее, чем выше температура реакционной смеси. Поэтому Книч предложил нагревать трубы с катализатором до 800 °С. Однако затем он обнаружил, что выходы триоксида серы значительно повышались, если трубы охлаждались остывшими обжиговыми газами. В результате многочисленных опытов Книч наконец установил наиболее оптимальную температуру реакций: лучше всего катализатор (платина) работал при 450 °С. Кроме того, Кничу удалось установить наиболее оптимальное время контактирования газа с катализатором.
К началу XX столетия благодаря разработке производства серной кислоты контактным способом концерн БАСФ обладал наиболее развитыми и совершенными в научно-техническом отношении производственными мощностями по получению этого вида продукта.
Первая стадия контактного метода была такой же, как и в камерном процессе: размельчение и обжиг серусодержащей руды. Затем проводилась очень тщательная очистка обжигового газа в пылепоглотительных камерах (причем начиная с 1906 г. поток газа пропускали через поле постоянного тока высокого напряжения, проводя таким образом электрофильтрацию). Очищенные таким образом газы направлялись через скруббер (промыватель) в сушильную башню и оттуда в башню предварительного подогрева, где они нагревались до температуры 420-445 °С. В последней башне диоксид серы пропускался над решетчатым платиновым фильтром, где он окислялся до триоксида серы: 2SO2 + О2 = 2SO3. Триоксид серы охлаждался до 40-60° С и попадал в поглотительные башни, наполненные 98 % -ной серной кислотой, при этом получалась «дымящая» серная кислота, которая собиралась в специальных башнях или других емкостях. Производственный процесс протекал таким образом непрерывно в течение многих лет. Он был, разумеется, сложнее, чем описанная нами упрощенная схема. Газы обжига в зависимости от используемого исходного сырья имели различный состав, а количество газа было очень велико. Установки имели очень большие размеры и были дорогостоящими, а при длительном простое или во время опытов легко разрушались.
В начале XX в. для получения триоксида серы в производстве серной кислоты чаще всего использовался контактный метод. В 1912 г. 60 % количества серной кислоты получали по такому «ангидридному» методу. В результате цена на серную кислоту снизилась, и немецкая анилинокрасочная промышленность (особенно производство индиго, ализарина и азокрасителей), нуждавшаяся в больших количествах серной кислоты с высоким содержанием ангидрида, могла теперь получать любые нужные ей количества кислоты и одерживать победы на международном рынке.
Данные Книча об использовании катализаторов в контактном методе очень пригодились Ф. Габеру и К. Бошу, которые работали на опытных установках, изучая взаимодействие азота воздуха с водородом для получения синтетического аммиака. Им удалось осуществить эту реакцию в 1903 г.
Ваш отзыв
Вы должны войти, чтобы оставлять комментарии.