Растровый электронный микроскоп
При исследовании синтетических волокон очень важно выяснить их морфологические характеристики, и для этого используют данные, полученные с помощью растрового электронного микроскопа.
Известно, что пучок электронов, так же как и поток света, в одних случаях проявляет свойства дискретных частиц, а в других волновые свойства. Эти особенности лежат в основе получения изображения с помощью электронного микроскопа. Длина волны электронного пучка, который перемещается под действием электрических и магнитных полей, зависит только от энергии электронов. Чем выше эта энергия, тем меньше длина волны. У электронов, ускоряемых полем с напряжением 60000 В, длина волны составляет 0,005 нм. Как и световые оптические приборы, электронные микроскопы позволяют «видеть» (т. е. разрешать) объекты, находящиеся друг от друга на расстоянии порядка половины длины волны. Однако на практике трудноустраняемые дефекты электронных микроскопов ограничивают предельное разрешение: разрешаются точки, отстоящие друг от друга на расстояние в несколько десятых нанометра. Это почти в 1000 раз лучше предельного разрешения оптического микроскопа.
В электронном микроскопе (рис. 1) источником электронов служит раскаленная вольфрамовая спираль. Испускаемые электроны ускоряются в электрическом поле при наложении напряжения в несколько десятков тысяч вольт. Роль, которую в световом оптическом микроскопе играют оптические линзы, у электронных микроскопов выполняют электростатические или магнитные поля.
Рис. 1. Принципиальная схема электронного микроскопа
И в оптическом, и в электронном микроскопе изображение формируется в соответствии с законами геометрической оптики, однако в отличие от светового излучения, распространяющегося прямолинейно, пучок электронов перемещается в поле по спирали. Траектория движения электрона резко изменится, если на своем пути эта частица столкнется с газообразными атомами и молекулами. Поэтому, прежде чем начинать работу, надо добиться, чтобы пространство внутри микроскопа не содержало ни воздуха, ни других газов. С этой целью в микроскопе создается разрежение (давление < 10-7 — 10-8 атм.), и в дальнейшем вся работа ведется в условиях гак называемого глубокого вакуума.
Электронно-микроскопическое изображение создается потоком электронов, невидимых для человеческого глаза, и поэтому его нельзя воспринимать визуально. Чтобы полученное изображение сделать видимым для глаза, пучок электронов подают на специальные экраны, покрытые светящимися составами.
Особенности строения поверхности различных объектов — чаще всего исследуют с помощью растрового электронного микроскопа.
В этом микроскопе на объект подается очень тонкий пучок электронов. Такой пучок с помощью специальных полей отклоняется, последовательно («по строчкам») «обегает» все точки объекта и формирует изображение поверхности. Однако изображение создается не электронным пучком, который падает на образец, а так называемыми вторичными электронами; последние выбиваются из образца электронным «лучом», улавливаются приемником-коллектором и преобразуются в электрический сигнал, который затем усиливается и используется для создания изображения уже на экране. По сравнению с оптическим растровый электронный микроскоп отличается не только более высокой разрешающей способностью, но и значительно лучшей глубиной резкости. Предположим, например, что на какой-то поверхности отдельные детали вполне различимы при 500-кратном увеличении. Если эта поверхность совершенно ровная, ее можно исследовать с помощью светового микроскопа, который дает большие увеличения. Однако, если на поверхности имеются неровности, необходимо использовать электронный микроскоп, потому что при 500-кратном увеличении в световом микроскопе рельеф поверхности достаточно четко прослеживается на глубину лишь 1-2 мкм от плоскости поверхности. Поэтому, наблюдая поверхность обрывков первичных волокон с сечением 20-30 мкм в оптическом микроскопе, можно различить только наиболее крупные детали, а многие особенности морфологии останутся неразличимыми. В электронном микроскопе мы увидим очень четкое объемное изображение такого волокна, и его поперечный срез можно исследовать очень подробно.
Ваш отзыв
Вы должны войти, чтобы оставлять комментарии.